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Crossover from reptation to Rouse dynamics in the cage model
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The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of
sideways motions, which cross the barriers imposed by the lattice. Using the density matrix method as a solver
of the master equation, the renewal time and the diffusion coefficient are calculated as a function of the
strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed
in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover

scaling exponents are calculated.
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I. INTRODUCTION

The motion of a single polymer dissolved in a gel has
been described in terms of reptation [1]. Typical for reptation
is that the polymer chain moves inside a tube, which can
only be refreshed by growth and shrinkage at the ends. In
order to make this motion suitable for analysis, lattice mod-
els have been designed of which the cage model, proposed
by Edwards and Evans in 1981 [2], is the oldest. It was
mainly considered as a simple model for reptation [1,3],
which is indeed the main mode of motion for polymers dis-
solved in a gel. The embedding lattice plays the role of the
gel imposing barriers for the motion. The original introduc-
tion allowed for two types of motion: “reptations,” which are
motions along the confining tube and sideways motions or
“barrier crossings,” in which the chain overcomes a barrier
and thus changes the tube configuration. So far most atten-
tion has been paid to the reptations only. In this paper we
concentrate on the interplay, which is quite delicate, as we
will show. For example, naively one might think that the
diffusion coefficient is the linear sum of the contributions of
the two mechanisms, but that is not at all the case, as has
been noted by Klein Wolterink and Barkema [4] in a similar
context. This makes it difficult to analyze experiments in
which the simultaneous presence of the two types of motion
can never be excluded. In the cage model the interplay of the
two modes can be fully analyzed.

The model has extensively been studied by Monte Carlo
simulations, which seems to be the only way to deal with the
master equation for the stochastic motion [5-9]. Since the
relevant master equation does not obey detailed balance, no
systematic solution method exists. The issues, to which we
presently address ourselves, were the subject of a lively de-
bate in the early nineties. The various simulations showed
certain tendencies, but the limitation to fairly short chains
and the intrinsic statistical noise prevented in our opinion
definite settling the role of Rouse dynamics vs reptation.

In this paper we use an alternative method, based on the
analogy between the master equation and the Schrodinger
equation, by which the temporal evolution of the probability
distribution of the chain configurations corresponds to the
evolution of the wave function. Of course the wave function
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may be complex, while the probability distribution is real
and positive. Also the master operator, viewed as a Hamil-
tonian, is non-Hermitian, which implies decay towards the
stationary state in contrast to the oscillatory temporal behav-
ior of the eigenfunctions of quantum problems. In spite of
these differences, one can benefit from the analogy, the more
so because the master operator corresponds to the Hamil-
tonian of a one-dimensional spin chain, for which the very
efficient density matrix method (DMRG) has been designed
by White [10]. The cage model remains a one-dimensional
quantum problem, irrespective of the lattice in which it is
embedded, because the chain itself is a linear structure.

We focus on two dynamic properties: the renewal time 7
and the diffusion coefficient D, and determine them directly
from the master operator. Both properties refer to asymptoti-
cally long times (the stationary state) and thus our calcula-
tions are complementary to the Monte Carlo simulations
which probe the short and intermediate time behavior [11].
The renewal time is the time needed for the chain to assume
a new configuration, which has no memory of the original
one. It is found from the gap in the spectrum of the master
operator. The master equation always has a trivial eigenvalue
0, corresponding to the stationary state. Any other initial
state ultimately decays towards the stationary state and the
slowest relaxation time (the inverse of the gap) is the renewal
time. Its calculation is difficult because for long chains, the
gap becomes very small and the excited states are hard to
disentangle from the stationary state. In fact the gap decays
with a negative power z of the length N of the chain, such
that 7~ N°. The zero-field diffusion coefficient D is related to
the drift velocity in a weak driving field. It decays as a power
N7

We will confine ourselves to one- and two-dimensional
embeddings. The degree of difficulty of the solution is re-
lated to the dimension of the embedding lattice, simply be-
cause the higher the embedding dimension, the higher the
spin in the corresponding spin chain and the more states
required in the DMRG approximation. In this paper we will
show that the one-dimensional version, which is admittedly
unrealistic, allows an analytical solution. The two-
dimensional embedding lattice presents the problem already
in its full complexity, while of course the three-dimensional
case is of the most experimental relevance. Actually the uni-
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FIG. 1. A picture of the polymer chain, consisting of reptons
(gray dots) and some examples of allowed repton motions. The
dashed arrows denote reptations (hernia moves), whereas the dotted
ones represent barrier crossings. The solid arrow presents the driv-
ing field direction.

versal properties are believed to be the same for embedding
lattices from d=2 and higher. The practical limitation to two-
dimensional embedding lattices derives from the fact that our
computations are already at the limits of present day possi-
bilities.

The DMRG approach yields very accurate results in the
domain where it converges. This enables us to use finite-size
scaling analysis for the determination of the exponents and
the crossover scaling functions. The case without crossing
barriers (the reptation dynamics) has powers different from
the case with these crossings (Rouse dynamics). From the
viewpoint of dynamic scaling, the exponents are exotic and
good illustrations of how crossover takes places from one
type of behavior to another. A crossover scaling representa-
tion for 7 and D strongly elucidates their behavior.

II. THE MODEL

The model is a chain of N+1 reptons, connected by N
links (yy,...,yy) to neighboring cells of a hypercubic lattice.
A picture of a chain is given in Fig. 1. The mobile units are
the reptons. The y; can take 2d values and because we have
a two-dimensional embedding lattice, we can denote them by
the directions N (north), E (east), S (south), and W (west).
Two consecutive reptons are always in adjacent cells, but the
chain may backtrack and cells can be multiply occupied (see
Fig. 1). The y; variables characterize the chain, since the
absolute position is irrelevant for the properties that we con-
sider. The statistics of the model is governed by the master
equation for the probability distribution P(Y,f), where Y
stands for the complete configuration (y;,...,yy). It has the
general form
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&PS:J) = S [WY[Y)P(Y', 1) - W(Y'|Y)P(Y,1)]
v
=S MOY.Y')P(Y'.0). ()
Yl

The W’s are the transition rates of the possible motions that
we have indicated in Fig. 1. The matrix M combines the gain
terms (in the off-diagonal elements) and the loss terms (on
the diagonal). M is a sum of matrices, for each repton one,

N

M(Y,Y') =2 M(Y,Y'), )
i=0

where the sum runs over the reptons starting with the tail
repton i=0 to the head repton i=N. The tail repton matrix is
diagonal in all the link variables except the first,

N
Mo(Y,Y") = mo(yilyDII 5yi,yi" (3)
=

The tail repton produces exclusively reptations. Each move
of the tail repton can be seen as a combination of a with-
drawal towards the cell of the next repton and from thereon a
move to a new cell. The matrix m, is explicitly given by the
scheme

y\y' N E S w

N -1-2B2 1 B2 B2

E 1 —1-2B2 B2 B2

S B? B? —1-2B7 1

w B2 B? 1 —1-2B?

The parameter B=exp(e/2) is a bias, which accounts for
the influence of a driving field, which can be an electric field
when the reptons are charged. The value of (the small) € is a
dimensionless measure for the strength of this driving field.
The driving field is along the body diagonal, here in the
north-east direction. So if the link N moves to the direction
W, the tail repton moves two units in the direction of the
field. The reverse process gets a bias B~2. The head repton
transition probabilities are given by a similar matrix with B>
replaced by B~2. They are depicted in Fig. 2. One could give
all the transitions an overall factor, but this would only in-
fluence the overall time rate. So we keep the unbiased tran-
sitions equal to 1.

The internal repton i changes two consecutive links
Yi>Yis1- The matrix M; is diagonal in all the other link vari-
ables. The transition matrix contains two types of contribu-
tions:

(i) Reptations. These are the cases where y; and y/,, are
opposite, e.g., N and S (sometimes called a hernia in the
chain). Then repton i can retract to the cell to which it is
doubly connected and then recreate a new hernia, a new pair
of opposite links, e.g., E and W (see Fig. 3). Note that the
sequence EW differs from WE. Moves towards EW and WE
obtain different biases.

(ii) Barrier crossings. A typical case is the sequence NE.
It may flip to the sequence EN. To reach that new position it
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FIG. 2. The allowed motions of the head repton with corre-
sponding transition ratios. The dashed arrow presents the driving
field.

necessarily has to cross the lattice point enclosed by the two
sequences. We give these transitions a (small) factor ¢ to-
gether with the biases which measure the distance that repton
i travels in the direction of the field (see Fig. 4).

It is worth noticing that for the cage model all transition
ratios are proportional to the bias B> (or B2) [12].

Generally, conservation of probability follows from the
fact that the sum over the columns of the matrix M vanishes.
So M has a zero eigenvalue and the eigenfunction corre-
sponding to this eigenvalue is the stationary state of the sys-
tem, to which every other initial state ultimately decays. The
matrix is nonsymmetric, due to the bias, which gives differ-
ent rates to a process and its inverse. Thus one has to distin-
guish between left and right eigenfunctions. The left eigen-
function, belonging to the zero eigenvalue, is trivial (all

SN

FIG. 3. The allowed motions of the hernia with corresponding
transition ratios. The dashed arrow presents the driving field.
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FIG. 4. The solid arrows present allowed motions for the barrier
crossing with corresponding transition ratios. The dashed arrow pre-
sents the driving field.

components equal), and the right eigenfunction is the station-
ary state distribution.

The renewal time is usually defined for bias B=1 (no
driving field). For the diffusion coefficient we introduce a
small driving field which induces an overall drift v,~ €. The
proportionality coefficient gives the diffusion coefficient D
according to the Einstein relation

_1(a
D_N( &6)6_0' )

M(Y,Y’) is the matrix representation of the master op-
erator M, acting as a Hamiltonian. As M is nonsymmetric
the Hamiltonian M is non-Hermitian. One may view the
states y; of the links as the states of a discrete plane rotator.
However, translating the action of M in terms of rotator
operators does not lead to a more transparent expression (ex-
cept for d=1, which maps on a spin 1/2 chain, see Sec. IV).

The model has only a few parameters: the length of the
chain N, the strength of the driving field €, and the relative
strength ¢ of the barrier crossings with respect to the reptat-
ing transitions. Experimentally the most interesting combina-
tion is the case where e—(0 and N— . This is a delicate
limiting process since the product eN may stay finite and
influences the nature of the stationary state strongly. The
properties that we consider, renewal time 7 and diffusion
coefficient D, refer to the case where this product remains
infinitesimal. Thus effectively we have only N and c as pa-
rameters. We will also see in this pair interesting scaling
combinations occur.

III. SYMMETRIES OF THE MASTER OPERATOR

For our analysis optimal use of the symmetries of the
master operator is vital. We have chosen the driving field in
the north-east direction in order to make the directions N and
E as well as § and W equivalent. We use two symmetry
operations of the lattice:

(i) Reflection with respect to the field axis. This turns the
direction N into E and vice versa and similarly it inter-
changes S and W. We refer to this operation as S| .
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(ii) Reflection parallel to the field axis, which inter-
changes the directions N and W as well as E and S. It is
denoted as §.

The Hamiltonian is invariant under the operation S, but
not under S;; it would be, if it were accompanied by a field
inversion. We can analyze the consequences of the symmetry
by considering the following transformation

0 N N+E+S+W
1 E 1| N-E+S-W
=R| . |== (5)
2 S 2\ N+E-S-W
3 w N-E-S+W

‘R is an orthogonal transformation of the states N, E, S, and
W of the links. The new states have a definite symmetry
character under the two operations. The state 0 is even under
S| and §), the state 1 is odd and even, 2 is even and odd, and
3 is odd for both. Let us illustrate the effect of this rotation
by applying it to the matrix m,, yielding

0o 0 0 O

0 my 0 mis

RmoR_l = (6)

myq 0 My 0

0 msy 0 mss

The entries are now labeled by the states 0, 1, 2, and 3 and
are given by

ml]=—2—(Bz+B_2)=m33, m22=—2(Bz+B_2),

myy=—2(B* = B™%) = 2my, = 2m,3. (7)

One sees that the matrix is block diagonal with a 2 X2 ma-
trix in the 0—2 channel and one in 1—3 channel. This results
from the invariance of the Hamiltonian with respect to S,
since the states 0 and 2 are even and the states 1 and 3 are
odd under this symmetry. So states of different parity under
S| are not mixed by the Hamiltonian. One also observes that
the matrix becomes diagonal for B=1. The off-diagonal ele-
ments concern transitions where the symmetry under field
inversion is changed.

The symmetry character of the links in the new states can
be carried over to larger segments of the chain, simply by
multiplying the parities of the constituting links. The states 0,
1, 2, and 3 not only function as states of the links, but also as
indices for the four different symmetry classes. What has
been shown in detail for the tail repton holds also for the
total Hamiltonian. It is invariant under S, and for B=1 also
under §.

For the diffusion coefficient we expand the master equa-
tion in powers of €.

M=My+eM;+ -+, PY)=Py(Y)+eP(Y)+ -,

(8)
and obtain the equations
M()PO:O, M0P1=—M1P0. (9)

The first equation is trivially fulfilled by a constant Py (Y),
since the matrix M is symmetric and the right eigenvector
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becomes equal to the trivial left eigenvector. Note that Py(Y)
is the direct product of state O for all the links. When we
perform the rotation (5) on all links, the vector P, changes
from a constant in all entries into the vector with a 1 in the
first entry and a O in all others.

The second equation is a set of homogeneous linear equa-
tions for the components of P;(Y). It is soluble, since the
right-hand side of the equation is perpendicular to the left
eigenvalue (which remains true for all orders in €). So we
can make the solution definite by requiring that it is also
orthogonal to the trivial left eigenvector. P;(Y) yields the
lowest order drift velocity v,,.

From the viewpoint of symmetries, the operator M is
invariant with respect to both S, and §. So it does not affect
the symmetry character of P, which therefore inherits its
symmetry from the right-hand side of Eq. (9). The latter
derives its symmetry from M since Py is fully symmetric.
From the example (6) we can see what the tail-repton Hamil-
tonian does to the first link: it turns it from state O (the
building block of P) to state 2. Detailed calculations show
that this also holds for the other components of M. By M,
the vector P, turns from sector 0 to sector 2. This is not
surprising since closer inspection of the right-hand side of
Eq. (9) shows that it is the microscopic expression for
the drift velocity. This reverses sign under S but stays in-
variant under S |, which is indeed the symmetry character of
sector 2.

IV. THE ONE-DIMENSIONAL MODEL

As a curiosity we mention the cage model for a one-
dimensional embedding lattice. Then the y; can take only two
values, which one would naturally take as 1 and —1. 1 is a
step forward and —1 a step backward along the embedding
line. On the line there is no possibility of barrier crossing and
we have therefore only reptations. An internal move takes
place when a pair of links (1,-1) turns into (-1,1) or vice
versa. In addition the tail and head link can change from 1 to
—1 or from —1 to 1. Such a model belongs to the class of
models which can be solved by the matrix product represen-
tation designed by Derrida ef al. [13]. Usually the model is
discussed in terms of the variables 1 (a particle) and 0 (a
vacancy) and one visualizes the dynamics as a form of traf-
fic. The particles cannot overtake each other and have to wait
until they can exchange with a vacancy. The mutual exclu-
sion of particles corresponds in the cage model to the fact
that a repton cannot move when it is surrounded by two links
of the same value. At the ends of the chain particles enter and
leave with certain rates, which in the cage model means that
the tail (and head) link can change into their opposite direc-
tion. Comparing the rules by which 1 and—-1 can interchange
in the cage model and the rates at which 1’s and —1’s are
created at the head and tail of the chain, one finds the rules
for the equivalent traffic model.

The class of such traffic models has been solved by
Sasamoto [14] and independently by Blythe et al. [15]. In
[16] this model has been related to the necklace model for
reptation, where the results of the traffic model are formu-
lated in terms of the language of polymer motion and expres-
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sions are derived for the drift velocity and the diffusion co-
efficient. It is interesting that one has a solution for the whole
range of values of the bias B. For example, the value of the
drift velocity becomes independent of the length N and reads
for large N
1
vg=—(B-B"). (10)
4
Thus indeed for small e the drift velocity becomes propor-
tional to e. The diffusion coefficient follows using Eq. (4)
with an asymptotic decay as D~ N~! and the diffusion expo-
nent equals x=1.

Not only the gap can be calculated explicitly, but also the
whole spectrum of the zero field Hamiltonian, since it be-
comes equivalent with the Heisenberg ferromagnetic spin
chain. The gap A reads

A=-2[1-cos(m/N)]. (11)

Note that the gap vanishes as A~ N2 for long chains, yield-
ing z=2.

Although all the moves of the d=1 cage model are repta-
tions, the exponents for the gap and the diffusion coefficient
are not typical for reptation. The reason is that the one-
dimensional model has no obstacles which slow down the
motion by an order of magnitude in the chain length N, as is
characteristic for reptation.

V. EFFECTIVE EXPONENTS AND CONVERGENCE

The DMRG expands the solution of the master equation
in a basis of size m. The accuracy of the method can be
tested by an internal parameter: the truncation error [10], but
more convincingly by the convergence of the results as func-
tion of m. The method is variational and m is the size of the
space of variational parameters. In Ref. [17] we have dis-
cussed the technique of the DMRG method in relation to the
master equation for reptation models. A log-log plot of the
raw data for the gap as a function of chain length N is not
very revealing, but rather misleading, as has been pointed out
by Carlon et al. [18]. A much more refined way of analyzing
the data is to use effective exponents. For the gap we define

_1n7(N+1)—1n7'(N—1) _dhnr
N TN+ D) -In(N—1)  dInN’

(12)

which is a function of the chain length. If the renewal time
were a strict power law 7~ N?, the expression (12) would
equal z, independent of N. We want to stress that only very
smooth data can be used to calculate these effective expo-
nents, because noise, which is, e.g., inherent in simulations,
will magnify in the ratio of small differences.

In order to obtain an estimate of the convergence we give
in Fig. 5 two sets of curves for ¢c=0.01 and ¢=0 for various
m. The curves for ¢=0.01 are quite close, such that further
increase of m does not lead to significantly different results.
On the contrary, for the pure reptation case c¢=0, the curves
keep changing with m for longer and longer chains. Note that
the basis is already unusually large (m=180) for DMRG cal-
culations. The large m was possible due to the speed up of
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FIG. 5. Comparison of m dependence for the gap exponent at
zero and nonzero c.

the process by using the full symmetry of the lattice. The
double symmetry allowed one to enlarge the size of the basis
m by a factor 4. For each value of ¢ there is a maximal value
of N for which the results converge for feasible values of m.
Within that range the DMRG values are also sufficiently ac-
curate such that the small differences in Eq. (12) do not
suffer from computational noise. In the pictures of the com-
ing sections we only plot the data which do not depend on
the value of m.

For the diffusion coefficient the domain of m-independent
data is even more restricted. Here we introduce, similar to
(12), the effective diffusion exponent

InD(N+1)-InD(N-1) _ dlnD
In(N+1)-In(N-1) dInN’

AN =

(13)

In Fig. 6 we show the exponent x for c=0 and ¢=0.01. The
latter is again reasonably convergent, but for the former we
could not go to sufficiently large m such that a convergent
domain starts to emerge. One also observes noise which is
not visible on a log-log plot, but which shows up as a result
of small numbers in numerator and denominator in Eq. (13).
So practically our calculations are limited to values larger
than ¢=0.001.
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/N

0 0.02 0.08

FIG. 6. The comparison of m dependence for the diffusion ex-
ponent at ¢=0 and ¢=0.01.
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FIG. 7. The renewal time exponent as a function of the length of
the chain for various values of the barrier crossing rate c. Note that
we have shortened the curve for c=0 with respect to the best curve
(m=180) in Fig. 5, because for longer chains we have significant
changes with increasing m.

The local exponents zy for the renewal time obtained for
various ¢ are collected in Fig. 7. In Fig. 8 we plot, in the
same way, the local exponent x for the diffusion coefficient.
Generally, in spite of the above mentioned restrictions, we
can make the following observations.

(a) Chains of the order of N=100 are not yet in the
asymptotic regime. The effective exponents still deviate ap-
preciably from the asymptotic value. In other words, there
are large corrections to scaling. In particular, the plateaus in
the small ¢ curves may easily lead to the conclusion that the
exponent has settled on a too large value.

(b) The influence of small values of ¢ is quite strong for
long chains. We come back on this point when we discuss
the crossover behavior.

(c) Although we have no clear evidence that the ¢=0
curve for the gap tends towards the asymptotic value z,,=3, it
is clear that the curves for smaller and smaller ¢ “try” to
approach this theoretical value for reptation. The approach to
the asymptotic value z,,=2, for larger c, is evident. This is
the exponent for Rouse dynamics.
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N

FIG. 8. The diffusion exponent as a function of the length of the
chain for various values of the barrier crossing rate c.
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FIG. 9. Log-log plots of the renewal time and the diffusion
coefficient as function of c.

(d) The curves that we could calculate for the diffusion
coefficient approach the asymptotic exponent x..= 1, which is
again the Rouse exponent for diffusion.

VI. CROSSOVER SCALING

As the curves of Figs. 7 and 8 show, the renewal time 7
and the diffusion coefficient D are widely varying functions
of the two parameters ¢ and N. We can organize the data
more transparently in terms of a crossover scaling function,
aiming at data collapse.

Anticipating the asymptotic values of the two regimes ¢
—0 and a fixed ¢ #0, the following representation is ad-
equate for the renewal time:

7(N,c) = N°g(c’N). (14)

From such a representation one derives for the effective ex-
ponent the expression

dlnr_
dinN "~

.\ d In g(c’N)
d1In(c’N)

(15)

The crossover function g(x) itself should be expandable for
small arguments as

gx)=go+gix+--- (16)

and for large arguments as

g(x)zi(g_l+%+--->. (17)

Inserting the asymptotic behavior (17) into Eq. (14) we ob-
tain

In(7/N*>)=Ing_; - Olnc+ -, (18)

where the dots refer to corrections of order 1/N. In Fig. 9 we
have made a plot of In(7/N?) vs In ¢, extrapolated to N—,
which corresponds to the first two terms of Eq. (18). As one
sees the curve is fairly straight, with a slope =-0.51, in the
domain where the data are most accurate. We use this value
in a scaling plot of g(x), which is shown in Fig. 10. The most
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FIG. 10. The crossover function g. The thick cross denotes
8(0).

important part of the figure is that for large argument the data
collapse and fall on a curve which decays as 1/x, implying
the crossover from reptation to Rouse dynamics. The pure
reptation behavior follows from the finiteness of g(x) for
small argument. The value g(0) can be derived from a plot of
7N73 versus N-!. We find the value g(0)==0.026, which is in
good agreement with the behavior of the curves for small
argument. We see that the data at small x do not coincide as
well as for large x. The reason is the inclusion of small
values of N for small c. Here the N is not sufficiently large to
have scaling. One should make N larger and ¢ smaller to
obtain good scaling in that region, but that regime is as yet
inaccesible to us.

In Fig. 9 also In 1/DN is plotted as function of Inc. It
again gives a straight line with the same slope #=0.515. We
use this value in the scaling plot, Fig. 11, for the diffusion
coefficient in the form

D(N,c) = N2f(cN). (19)
As one sees the collapse is amazingly good here in view of
the lesser quality of the data, as compared to the renewal
time. Also smaller N and “large” ¢ are included, although no
real scaling can be expected for these values. It proves that
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FIG. 11. The crossover function f. The thick cross denotes

f(0).
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crossover scaling works very well for the diffusion coeffi-
cient. The crossover scaling function f approaches again a
finite value at x=0 that can be estimated from Fig. 11 as
f(0)=3.67. For large arguments, f(x) should behave as f(x
— o) ~x, which is confirmed by the plot. It again shows the
crossover from reptation to Rouse dynamics.

VII. DISCUSSION

We have found that the renewal time and the diffusion
coefficient can be transparently described by the crossover
scaling functions (14) and (19). In particular the diffusion
data fit the scaling curve very well for practically all the
points calculated. The crossover scaling exponent is found to
be 6=0.51 and we are fairly convinced that the exact value is
1/2. Not only do the data support this value but also an
analytical argument can be given for #=1/2, which runs as
follows: Reptation does not change the backbone of the
chain (which results from stripping the hernias from the
chain). The hernias walk along the backbone and are created
and annihilated at the end of the chain. For the removal of a
backbone segment of length N, the end repton has to diffuse
over a distance of order N. For this diffusion along the back-
bone the curvilinear diffusion coefficient applies, which is an
order N larger than the total diffusion coefficient, so it is of
order N™! (see also Sec. IV). The time scale for diffusion is
distance squared (N?) divided by the diffusion constant
(N71). Thus a backbone segment of order N requires a time
scale N?/N-'=N? to be renewed (this in fact explains the
reptation exponent z=3). On the other hand, to change that
backbone segment by direct hopping over barriers, one needs
the time N/c. The fastest process dominates and the compe-
tition is controlled by the ratio of the rates N°/(N/c)=cN>.
So the crossover scaling function should be a function of the
ratio ¢N?, which yields 6=1/2.

One may wonder why it is so difficult for DMRG to reach
long N for small ¢, while the Hamiltonian simplifies for ¢
=0. As one observes from Figs. 7 and 8, there is a zone
where the values make a turn from reptative behavior to
Rouse dynamics. The basis in the DMRG approximation has
to be large enough to notice this difference in behavior at the
appropriate N, which grows as ¢™"2. One needs a basis size
m of the same order to describe the crossover. It does not
mean that it is impossible to use DMRG for the pure cage
model with ¢=0. But then one has to use a representation of
the Hamiltonian which explicitly acknowledges the extra
symmetries which are present in this model. Additional sym-
metries of the cage model are discussed in the papers of van
Heukelum er al. [9]. A similar situation occurs in crossover
in the Rubinstein-Duke model [19].

The results of this paper are quite similar to the crossover
found in a one-dimensional Rubinstein-Duke model with
hernia creation and annihilation [16]. This leads us to believe
that the crossover in gels is a universal phenomenon with the
crossover exponent #=1/2, independent of the embedding
lattice, as long as the embedding lattice permits sideways
motion, which cross the barriers. Sometimes the motion rules
exclude crossing of barriers, e.g., in the one-dimensional em-
bedding. But also in a lattice with triangular cells, crossing is
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impossible within the rule that links are always between
nearest neighbor cells.

We find that with fixed nonzero crossing rate c, the chain
always tends towards Rouse dynamics for larger and larger
N. This contrasts the general observation that in polymer
melts the opposite tendency takes place: longer chains dis-
play reptative behavior [6,20]. It is clear that the obstruction
due to other polymers cannot be seen as a fixed barrier, with
a certain tunneling rate. Thus our results cannot be applied to
polymer melts using a fixed rate for sideways motion. In
other words, ¢ must become a function of the chain length.
To handle a chain length dependent Hamiltonian gives a
complication in DMRG. Apart from the difficulties to find an
adequate model for polymer melts that allows one to treat
very long chains accurately, we may speculate that an “ef-
fective” rate ¢ for sideways motion depends as a power N~
on the length N. The combination ¢cN>~N>~% determines
whether one sees reptation of Rouse dynamics. It is tempting

PHYSICAL REVIEW E 74, 061801 (2006)

to take for « the effective renewal exponent zy, defined in
Eq. (12), because it takes the renewal time for a polymer to
move out of the way. As this « is always larger than 2, the
combination shrinks with growing length, making the « even
larger. Thus one observes the opposite crossover: from Rouse
dynamics to reptation.

Although it is feasible to realize experimentally two-
dimensional systems, we do not think that it is of great im-
portance to discuss these possibilities, since our results are
likely not very sensitive to the dimensionality of the system.
The universal quantities that we calculate apply also to three-
dimensional systems.
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